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Abstract
Reconsidering the analysis of the moduli space of N = 2 eight-dimensional
supergravity coupled to seven scalars, we propose a new scalar manifold
factorization given by SO(2, 2)/(SO(2) × SO(2)) × SO(2, 1)/SO(2) ×
SO(1, 1). This factorization is supported by the appearance of three solutions
of Type IIA extremal black p-branes (p = 0, 1, 2) with AdSp+2 × S6−p near-
horizon geometries in eight dimensions. We analyze the corresponding attractor
mechanism. In particular, we give an interplay between the scalar manifold
factors and the extremal black p-brane charges. Then we show that the dilaton
can be stabilized by the dyonic black 2-brane charges.

PACS numbers: 04.70.−s, 04.65.+e, 11.25.−w

1. Introduction

In previous years, four-dimensional extremal black hole attractors have received an increasing
attention in the context of supergravity theories embedded in superstrings and M-theory
compactified on Calabi–Yau manifolds [1–21]. In the near-horizon geometry limit, some of
the supergravity scalar fields, obtained from geometric deformations, can take fixed values
in terms of the black hole charges. Several studies of the N = 2 attractor mechanism in
Type IIA superstring on Calabi–Yau 3-folds reveal that in such a limit only the complexified
Kähler moduli can be stabilized by the Abelian black hole charges. The remaining scalar
fields corresponding to the complex structure deformations, the values of the R–R C-fields on
three cycles, the dilaton and the axion, remain free and can take arbitrary values.

However, the situation in six dimensions, which is obtained from Type IIA superstring on
the K3 surface, is somewhat different. In this model, the attractor mechanism deals with the
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full geometric moduli space including both the complexified Kähler and the complex structure
deformations [22–25]. These geometric parameters can be combined with the NS–NS B-field
values, on non-trivial two cycles of the K3 surface, to form a quaternionic scalar manifold.
Using a matrix formulation for such a quaternionic part, the geometric moduli of the K3
surface and the value of the NS–NS B-field are determined by the Abelian black hole charges.
However, the dilaton, being identified with a non-compact orthogonal direction (SO(1, 1)),
is attracted at the horizon of the extremal black F-string in terms of its charges (electric and
magnetic).

More recently, a special effort has been devoted to discuss extremal black branes in higher
dimensional supergravities [26]. This concerns the intersecting attractors involving extremal
black holes and black strings in D > 5 dimensional supergravities. In particular, effective
potentials and entropy functions have been computed in terms of U-duality black brane charge
invariants.

The main purpose of this paper is to reanalyze the moduli space of eight-dimensional
supergravity with N = 2 supersymmetry. We study the attractor mechanism in the framework
of Type IIA superstring on the elliptic curve. In particular, we consider the extremal black
p-branes. The corresponding near-horizon geometries are given by products of AdSp+2

with (6 − p)-dimensional real spheres S6−p. In this work, we propose a new realization
for the scalar manifold of N = 2 supergravity in eight dimensions. This moduli space
realization involves three factors which correspond to the appearance of three solutions of eight-
dimensional extremal black p-branes with p = 0, 1, 2. Motivated by the compactification on
the K3 surface, we discuss the attractors of such extremal black objects. In particular, we
establish a correspondence between the scalar manifold factors and the extremal black objects
charges. Then, a special interest is devoted to the dyonic black 2-brane attractor. The minimum
of its effective potential gives the value of the dilaton in the AdS4 × S4 near-horizon geometry
limit.

The organization of this paper is as follows. In section 2, we develop a new factorization
for the scalar manifold of N = 2 eight-dimensional supergravity involving three factors. The
identification of each factor is based on the appearance of three different extremal black p-
branes. In section 3, we discuss the attractor mechanism of such black objects. In particular,
we point out the existence of a link between the extremal black brane charges and the N = 2
scalar manifold factors in eight dimensions. The last section is devoted to discussion of the
results and open questions.

2. On the moduli space of N = 2 supergravity in eight dimensions

In this section, we reconsider the analysis of the scalar manifold of N = 2 supergravity in
eight dimensions. The embedding of extremal black p-branes in Type IIA superstring theory
on the elliptic curve provides a new factorization scheme for the seven scalars. We begin first
by a review on the study of the scalar manifold. We will restrict ourself to the bosonic sector.
The field content of the model consists of a graviton, 6-vector fields, three 2-form gauge fields,
one self-dual 3-form gauge field and seven scalars. This spectrum can be obtained from the
reduction of M-theory by T3 with the SL(3, R) × SL(2, R) U-duality group [27]. The full
spectrum is given by

(
Gμν, B

I
μν, A

Iα
ν , Cμνρ, L

�
I , Lα

i

)
, �, I = 1, 2, 3, α, i = 1, 2. (2.1)

LI
α is the coset representative of SL(3,R)

SO(3)
, while Lα

i is the coset representative of SL(2,R)

SO(2)
. In

the M-theory picture, the scalar fields are the coordinates of the following homogeneous
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Table 1. This table gives the correspondence between the scalar manifold factors and extremal
black p-brane charges in Type IIA superstring on the K3 surface.

Coset space Black brane Gauge symmetry

S0(4,20)

SO(4)×SO(20)
Black holes (black 2-branes) U(1)24

SO(1, 1) Black F-string U(1)

space:
SL(3, R)

SO(3)
× SL(2, R)

SO(2)
. (2.2)

This scalar manifold represents the deformation of the metric and the value of the eleven-
dimensional supergravity 3-form on T3. Up to an overall scale factor corresponding to the size
of T3, SL(3,R)

SO(3)
determines the choice of the metric of T3. SL(2,R)

SO(2)
is coordinated by the volume

of T3 and the value the 3-form gauge field takes on it.
Because of the strong coupling limit duality, the spectrum of the above eight-dimensional

supergravity can also be obtained from the reduction of Type IIA superstring by T2 (that is
an S1 × S1 fibration). This manifold has an obvious flat metric which depends on the size
of the two circles. The moduli space of T2 contains a real parameter describing its size and
a complex parameter controlling its shape. The compactification of the massless bosonic
ten-dimensional Type IIA superstring fields,

NS–NS : GMN,BMN, φ R–R : AM,CMNK M,N,K = 0, . . . , (2.3)

gives the same spectrum discussed above.
Motivated by the results obtained from the K3-attractors, and based on the T-duality

groups in Type II superstrings, we propose here a new factorization for the scalar manifold
of N = 2 supergravity in eight dimensions involving three factors. This factorization will be
related to the appearance of three extremal black p-brane solutions with p = 0, 1, 2. To do so,
let us first recall some ideas about the K3-attractors. The corresponding N = 2 supergravity
consists of, among other, (4 × 20) + 1 = 81 scalar fields, a U(1)24 gauge symmetry and one
self-dual antisymetric B-field. The scalars span the following manifold product:

SO(4, 20)

SO(4) × SO(20)
× SO(1, 1). (2.4)

Here S0(4,20)

SO(4)×SO(20)
describes the geometric moduli space admitting a hyper-Kähler structure.

The extra factor SO(1, 1) stands for the dilaton, defining the string coupling constant gs. It
turns out that the two coset factors appearing in (2.4) correspond to two different extremal
black objects in six dimensions required by the electric/magnetic duality. If we have an
electrically charged p-brane, the magnetically charged dual object is a q-brane such that

p + q = 2. (2.5)

There are essentially two six-dimensional extremal black p-brane solutions defined by p = 0, 1
with AdSp+2 × S4−p near-horizon geometries. p = 0 corresponds to AdS2 × S4 describing an
electric-charged black hole, dual to the magnetic black 2-brane with AdS4 × S2 near-horizon
geometry. p = 1 is associated with a dyonic black F-string whose near-horizon limit is
AdS3 × S3. From the study of the attractor horizon geometries of extremal black p-branes
(p = 0, 1) in Type IIA superstring on the K3 surface [22], we obtain the following connection
given in table 1.

Motivated by these results, we expect to have a similar correspondence in the N = 2
eight-dimensional supergravity theory embedded in Type IIA superstring compactified on T2.

3
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In this way, the analog of equation (2.5) reads as

p + q = 4, (2.6)

and can be solved in three different ways like

p = 0 (q = 4) Black holes (dual black 4-branes)
p = 1 (q = 3) Black strings (dual black 3-branes)
p = 2 (q = 2) Dyonic black 2-branes

The extremal near-horizon geometries of these objects are given by the products of AdSp+2

with real spheres S6−p. In eight dimensions, they are classified into three categories.

(1) p = 0 corresponds to an AdS2 × S6 describing the near-horizon geometry of electric-
charged black holes. Their dual magnetic are black 4-branes with AdS6 ×S2 near-horizon
geometries. The objects carry charges associated with the gauge invariant field strengths
F i = dAi(i = 1, . . . , 6) of the N = 2 supergravity theory.

(2) p = 1 is associated with AdS3 × S5 describing near-horizon geometry of extremal
black strings. They carry electric charges associated with 3-form field strengths
Hi = dBi(i = 1, . . . , 3). The electric charge is proportional to the integral of �H

over S5 that encloses the string. The magnetic dual horizon geometry reads as AdS5 × S3

and describes black 3-branes. They are charged under the gauge invariant 3-form field
strengths Hi = dB.

(3) p = 2 corresponds to a dyonic black 2-brane with AdS4 × S4 near-horizon geometry.
This object carries both electric and magnetic charges associated with the single gauge
invariant 4-form field strength G = dC.

We shall see that this classification could be related to the moduli space of Type
IIA superstring on Calabi–Yau spaces. In this compactification, there are three different
contributions classified as follows.

• The dilaton defining the string coupling constant.
• The geometric deformations of the Calabi–Yau space including the antisymmetric B-field

of the NS–NS sector. Depending on the Calabi–Yau spaces, these parameters involve
complex structure deformations, complexified Kähler deformations or both.

• The scalar moduli described by the values of the R–R gauge fields wrapped on non-trivial
cycles in the Calabi–Yau spaces.

According to this observation and based on the K3-attractor results mentioned earlier, the
moduli space of Type IIA superstring compactified on T2 should have a priori three factors.
They may be related to the existence of three solutions of extremal black p-branes with
p = 0, 1, 2. Under this hypothesis, the corresponding scalar manifold should take the form

M1 × M2 × M3. (2.7)

The main physical motivation of this factorization is to solve the attractor equation of black
objects in eight dimensions separately. In particular, we would like to deal with individual
black attractor equations like in the case of Type IIA superstring on K3, where the moduli
space (2.4) involves only two factors. It has been shown in that case each factor corresponds
to an individual black attractor solution [22]. Here, we expect to have a similar situation
with three kinds of attractor equations corresponding to the three different black objects
(p = 0, 1, 2) which appear in eight dimensions. Our factorization is obtained from breaking
the Spin(3) × Spin(2) R-symmetry involved in the moduli space realization (2.2) given by
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Salam et al which involves only two factors. However, in that realization one factor is
associated with several black attractor equations. The breaking of R-symmetry to U(1)×U(1)

that we point out provides a moduli space factorization into three subspaces where each one
is associated with only one attractor equation. This representation will be useful for solving
such equations separately without using intersecting near-horizon geometries of black objects
[26].

The identification of each factor of (2.7) can be obtained by the help of the conjecture
given in [25]. This conjecture can be re-formulated in the framework of the elliptic curve as
follows:

(1) The black hole charges fix only the geometric deformations of the elliptic curve (the
complex structure deformation, the Kähler deformation and the NS–NS B-field on T2).

p = 0 Black hole charges → The geometric parameters.

(2) The moduli related to the values of the R–R gauge vectors on one cycle of the elliptic
curve should be fixed by black string charges

p = 1 Black string charges → The R–R stringy moduli.

(3) The dilaton could be fixed as usual by the dyonic state, which in this case is a black
2-brane

p = 2 Dyonic black 2-brane charges → the dilaton.

Based on this conjecture, we will identify each Mi factor of (2.7) with a coset space. The
T-duality role in Type IIA superstring on the elliptic curve requires that one factor should
be identified with

M2 = SO(2, 2)

SO(2) × SO(2)
,

determined by 2 × 2 = 4 parameters controlling the metric deformation and the value of
the NS–NS B-field on the elliptic curve. The T-duality group of Type II superstrings
is SO(2, 2) and that of M-theory is SL(3). This result can be generalized to the
compactification on Td. In this case, the geometric scalar fields parametrize the coset
space SO(d,d)

SO(d)×SO(d)
. This space corresponds to the choices of the metric with d(d+1)

2

degrees of freedom and the values of the antisymmetric B-field with d(d−1)

2 contributions.

The dilaton is related to the string coupling

gs ∼ exp(φ).

This is invariant under the shift φ → φ +α. At some points of the moduli space of T2, α can be
related to the complexified Kähler parameter. In fact, it is related to the Riemanian volume of
T2 and the volume provided by the B-field. These two parameters are related by the SO(1, 1)

group. In this way, the dilaton in eight dimensions can be represented, as in six dimensions,
by a non-compact circle given by

M1 = SO(1, 1).

The two remaining parameters specifying the Wilson line on T2 can be combined into a
complex field. It can be represented by the coset space

M3 = SO(2, 1)

SO(2)
.

This factor will be related to the black string solutions. In fact, there are three black string
charges. From Type IIA superstring on elliptic curves viewpoint, one charge corresponds to

5
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the fundamental string living in the NS–NS sector; while the other two are related to the R–R
sector. These charges can be rotated by the SO(1, 2) isometry group.

Finally, the factorization (2.7) reads as

SO(2, 2)

SO(2) × SO(2)
× SO(2, 1)

SO(2)
× SO(1, 1). (2.8)

It is worth commenting on a possible interrelation between this Type superstring factorization
and the M-theory one. The factor SO(2,2)

SO(2)×SO(2)
can be parametrized by two complex scalar

fields. One of them can be identified with the complexified volume of T3 of the M-theory
compactification given by the SL(2,R)

SO(2)
. The other complex scalar come from the SL(3,R)

SO(3)
coset

space. The SO(1, 1) factor can also be deduced from the last coset space. The remaining two
scalar fields of SL(3,R)

SO(3)
can be combined in the factor SO(2,1)

SO(2)
.

Next we will analyze the extremal black p-brane attractors which correspond to this new
realization of the scalar manifold of N = 2 supergravity in eight dimensions.

3. Attractor mechanism on the elliptic curve

Here we discuss the attractor mechanism of extremal black branes that appear in Type IIA
superstring compactified on the elliptic curve. We start by briefly recalling the main results
obtained in the context of higher dimensional Calabi–Yau backgrounds. Consider Type
IIA superstring on a Calabi–Yau n-folds with SU(n) (n > 0) holonomy group. In the low
energy limit, it leads to supergravity models with only 26−n supercharges. The near-horizon
geometries of the extremal black p-branes dealt with here are given by the product of AdS
spaces and real spheres as follows:

AdSp+2 × S8−2n−p. (3.1)

The numbers n and p satisfy the constraint

2 � 8 − 2n − p. (3.2)

For the compactification on the Calabi–Yau n-folds, the electric/magnetic duality relating
electric black p-branes to q-dimensional magnetic ones reads as

p + q = 6 − 2n. (3.3)

In the case of the Calabi–Yau 3-folds, this equation can be solved by p = q = 0 describing a
dyonic black hole with AdS2×S2 near-horizon geometry. The corresponding compactification
leads to a four-dimensional N = 2 supergravity with eight supercharges, coupled to a
U(1)h1,1+1 Abelian symmetry5. There are also scalars belonging to the vector multiplets
and hypermultiplets. The complexified Kähler moduli space is associated with the vevs
of the vector multiplet scalars. The complex structure deformations, the R–R gauge field
contributions, the axion and the dilaton belong to the hypermultiplets. The scalars of the
hypermultiplets do not play any role in the study of four-dimensional black hole attractors and
can be ignored. In Type IIA superstring on Calabi–Yau 3-folds, several studies concerning
the attractor mechanism show that in the AdS2 × S2 near-horizon limit only the complexified
Kähler moduli can be fixed by the Abelian black hole charges [2–16]. This can be obtained
by minimizing the black hole effective potential [17]. This potential appears in the action of
the N = 2 supergravity coupled to the Maxwell theory in which the Abelian gauge vectors
come from the reduction of the 3-form on two cycles of the Calabi–Yau three folds. The
hypermultiplet scalars remain free and take arbitrary values near the horizon limit of black

5 h1,1 is the dimension of the complexified Kähler moduli space in Type IIA superstring on Calabi–Yau 3-folds.
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holes. It is worth pointing out that the complex structure parameters have been fixed in the
context of Type IIB superstring on the Calabi–Yau 3-folds.

However, the situation in six dimensions is somewhat different. It is obtained by the
compactification on the K3 surface which is a Calabi–Yau 2-folds. This manifold has a mixed
geometric moduli space involving both the Kähler and the complex structure deformations.
These scalars together with the values of the NS–NS B-field are fixed by the Abelian charges
of the extremal black holes with AdS2 × S4 near-horizon geometry. In the AdS3 × S3 near-
horizon limit, the dilaton has been fixed by the charges (electric and magnetic) of thr extremal
black F-string [22].

So far we have recalled lower dimensional results; now we consider the case of n = 1
corresponding to the reduction on the elliptic curve. The analysis we follow here is quite similar
to the case of N = (1, 1) supergravity in six dimensions obtained from the compactification
on the K3 surface. A close inspection reveals that the six and eight dimensions share some
similarities. In both cases, they involve extremal black extended objects. This objects are
absent in the higher dimensional Calabi–Yau compactification n � 3.6 Moreover, the metric
deformations and the values of the B-fields can be collected in one coset space. They are given
by SO(4,20)

SO(4)×SO(20)
for the K3 surface and SO(2,2)

SO(2)×SO(2)
for T2.

3.1. Scalar manifold factors/extremal black p-brane charges correspondence

Here we analyze the correspondence between the above moduli space factors and the p-brane
charges. In eight-dimensional N = 2 supergravity, the total Abelian gauge group is

U(1)b2b × U(1)3
bs × U(1)6

bh. (3.4)

The U(1)b2b factor is the Abelian gauge symmetry associated with the single field strength of
the 3-from, the R–R 3-field which can be decomposed into a self-dual and anti-self-dual sectors
leading to the electric and magnetic charges of the dyonic black 2-branes. The electric and
magnetic charges can be rotated by SO(1, 1) isotropy symmetry, and therefore, it corresponds
to the dilaton scalar manifold.

The Abelian factor U(1)3
bs corresponds to three gauge field strengths Hi = dBi

(i = 1, 2, 3). One of them comes from the NS–NS sector associated with the F-string,
while the two other are obtained from the reduction of the R–R C-field on the two one cycles
of the elliptic curve. In this way, U(1)3

bs gauge symmetry can be factorized as

U(1)3
bs = U(1) × U(1)2. (3.5)

This separation of the charges is governed by a SO(2, 1) isotropy symmetry. A simple
inspection suggests that this sector can be associated with the coset space SO(2,1)

SO(2)
.

The last factor U(1)6
bh is the Abelian gauge symmetry associated with the six field

strength 2-forms Fi(i = 1, . . . , 6) of the eight-dimensional supergravity multiplet. These
vector fields arise not only from the R–R sector, as in the case of higher dimensional Calabi–
Yau compactification, but also from the NS–NS sector due to the fact that b1(T

2) �= 0. One
might factorize the U(1)6

bh gauge symmetry as

U(1)6
bh = U(1)2 × U(1)2 × U(1) × U(1). (3.6)

These Abelian gauge fields can be obtained from the NS–NS and R–R sectors. The
U(1)2 × U(1)2 gauge sub-groups are obtained from the NS–NS sector. This part has only
SO(2)×SO(2) isotropy symmetry. There are another U(1)× U(1) gauge factor which come
from the R–R sector. It is worth recalling that these gauge fields are the R–R 1-form and the

6 This can be easily seen from the equation (3.2).
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Table 2. This table describes the relation between scalar manifold factors and extremal black
p-brane charges in eight dimensions.

Coset space Black objects Gauge symmetry

SO(2,2)

SO(2)×SO(2)
Black holes (black 4-branes) U(1)6

bh

SO(2,1)

SO(2)
Black strings (black 3-branes) U(1)3

bs

SO(1, 1) Black 2-brane U(1)b2b

reduction of the 3-form on the elliptic curve. With the presence of these fields, we shall see
that there is an enhancement of the isometry group. This can be supported by the M-theory
uplifting scenario. From M-theory point of view, the six gauge fields can be classified into
two categories. Three of them are obtained from the metric, while the remaining three one
come from the 3-form. In fact, the eleven-dimensional metric gives two vectors belonging to
the NS–NS sector and one vector living in the R–R sector. The corresponding Abelian gauge
charges can be rotated by the SO(2, 1) isotropy symmetry. The bosonic field content of the
reduction of the eleven-dimensional 3-form consists of a similar vector contributions which
are also rotated by SO(2, 1). The full isometry group should be SO(2, 1) × SO(2, 1). It is
a well-known fact that SO(2, 1) × SO(2, 1) is equivalently to SO(2, 2), as we want. In this
way, the above six charges can be related to the variation of the metric and the B-field on the
elliptic curve ( SO(2,2)

SO(2)×SO(2)
). This can be understood from the equivalence

SO(2, 2)

SO(2) × SO(2)
∼ SO(2, 1)

SO(2)
× SO(2, 1)

SO(2)
.

Finally, we propose the following correspondence given in table 2.

3.2. Dyonic 2-brane attractors

Since the technical analysis of six and eight dimensions are quite similar, we shall only discuss
here the dyonic solution7. The dyonic black 2-brane is associated with the case of n = 1 and
p = 2 whose near-horizon geometry is given by AdS4 × S4. In this configuration, there are
no closed 2 and 3-forms, so the corresponding charges are not allowed. There are only 4-form
charges (electric and magnetic) supported by this geometry. Using an analysis similar to the
one given in [26], the near-horizon geometry ansatz of this configuration can be written as

ds2 = r2
AdS ds2

AdS4
+ r2

S ds2
S4 , G4 = p αS4 + e βAds4 , (3.7)

where αS4 and βAdS4 denote respectively the volume forms of S4 and AdS4. The magnetic
charge p and the electric charge e are defined by

p =
∫

S4
G4 e =

∫
AdS4

�G4. (3.8)

It is useful to introduce the parameterization Q1,2 = 1
2 (p ± e), so the central charges take the

following general form

Z = MQ, (3.9)

where M is a 2 × 2 matrix parameterizing the SO(1, 1) factor. This matrix is represented by(
cosh(2φ) sinh(2φ)

sinh(2φ) cosh(2φ)

)
, (3.10)

7 We hope to give a general solution in a future work [28].
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where φ is the dilaton scalar field. The dyonic black 2-brane effective potential for the dilaton
is given as usual in terms of the central charges. Using the equation (3.10), this potential reads
as

Veff = 1
2 (p2 exp(−4φ) + e2 exp(4φ)). (3.11)

The dilaton is stabilized at the minimum of the previous potential by the following attractor
equations

dV

dφ
= 0,

d2V

d2φ
> 0. (3.12)

The solution of these equations is

exp(4φ) ∼ p

e
. (3.13)

We obtain here exactly the same value of the dilaton that appears in the K3 attractor. In both
cases the dilaton can be fixed by the electric and magnetic charges of the dyonic object. The
only difference that occur in eight dimensions is that the dilaton can be fixed by black 2-brane,
while in six dimensions it has been fixed by black string charges.

4. Conclusions and open questions

We have reconsidered the analysis of the moduli space of N = 2 eight-dimensional
supergravity. The near-horizon geometries of the corresponding extremal black p-branes
have been assumed to be products of AdSp+2 with (6 − p)-dimensional real spheres S6−p.
Inspired from K3-attractors, we have proposed a new three factor realization for the scalar
manifold of such a N = 2 supergravity model. This form is based on the existence of three
different extremal black p-brane solutions with p = 0, 1, 2. Using the conjecture introduced
in [25], we have identified the black objects associated to each factor. In particular, each coset
space has been associated with a eight-dimensional black brane charge solution. The novel
feature is that in this case the number of U(1) charges associated to the black objects is larger
than the dimension of the scalar factor moduli. However, given the discrete character of the
charges, this effect, which is not present in the six-dimensional case, does not imply by any
means any redundancy or over counting.

We have also analyzed the attractor mechanism on the elliptic curve, and pointed out a
correspondence between the scalar manifold factors and the extremal black object charges.
We specially focused on the case of dyonic attractors. In the AdS4 × S4 near-horizon limit
of the black 2-brane we have shown that upon minimization the effective potential fixes the
value of the dilaton in terms of electric and magnetic charges.

An interesting open question concerns the solution of the attractor equations for general
extremal black p-branes in eight dimensions. It should be also interesting to look for non
supersymmetric attractor solutions on the elliptic curve.

Another open problem is the analysis of extremal black brane attractors on general
Riemann surfaces. In particular the study would be interesting for a two-dimensional sphere
S2, where there is only one Kähler parameter controlling its size, and the gauge vectors come
only from the R–R sector. In this case, we guess that the size of S2 might be fixed by the R–R
black hole charges. We shall address these open questions in the future [28].
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